87 research outputs found

    Characterizing forest fragmentation : Distinguishing change in composition from configuration

    Get PDF
    This project was funded by the Government of Canada through the Mountain Pine Beetle Program, a three-year, $100 million program administered by Natural Resources Canada, Canadian Forest Service. Additional information on the Mountain Pine Beetle Program may be found at: http://mpb.cfs.nrcan.gc.ca.Forest fragmentation can generally be considered as two components: 1) compositional change representing forest loss, and 2) configurational change or change in the arrangement of forest land cover. Forest loss and configurational change occur simultaneously, resulting in difficulties isolating the impacts of each component. Measures of forest fragmentation typically consider forest loss and configurational change together. The ecological responses to forest loss and configurational change are different, thus motivating the creation of measures capable of isolating these separate components. In this research, we develop and demonstrate a measure, the proportion of landscape displacement from configuration (P), to quantify the relative contributions of forest loss and configurational change to forest fragmentation. Landscapes with statistically significant forest loss or configurational change are identified using neutral landscape simulations to generate underlying distributions for P. The new measure, P, is applied to a forest landscape where substantial forest loss has occurred from mountain pine beetle mitigation and salvage harvesting. The percent of forest cover and six LPIs (edge density, number of forest patches, area of largest forest patch, mean perimeter area ratio, corrected mean perimeter area ratio, and aggregation index) are used to quantify forest fragmentation and change. In our study area, significant forest loss occurs more frequently than significant configurational change. The P method we demonstrate is effective at identifying landscapes undergoing significant forest loss, significant configurational change, or experiencing a combination of both loss and configurational change.PostprintPeer reviewe

    Regionalization of landscape pattern indices using multivariate cluster analysis

    Get PDF
    This project was funded by the Government of Canada through the Mountain Pine Beetle Program, a six-year, $40 million program administered by Natural Resources Canada, Canadian Forest Service. Additional information on the Mountain Pine Beetle Program may be found at: http://mpb.cfs.nrcan.gc.ca.Regionalization, or the grouping of objects in space, is a useful tool for organizing, visualizing, and synthesizing the information contained in multivariate spatial data. Landscape pattern indices can be used to quantify the spatial pattern (composition and configuration) of land cover features. Observable patterns can be linked to underlying processes affecting the generation of landscape patterns (e.g., forest harvesting). The objective of this research is to develop an approach for investigating the spatial distribution of forest pattern across a study area where forest harvesting, other anthropogenic activities, and topography, are all influencing forest pattern. We generate spatial pattern regions (SPR) that describe forest pattern with a regionalization approach. Analysis is performed using a 2006 land cover dataset covering the Prince George and Quesnel Forest Districts, 5.5 million ha of primarily forested land base situated within the interior plateau of British Columbia, Canada. Multivariate cluster analysis (with the CLARA algorithm) is used to group landscape objects containing forest pattern information into SPR. Of the six generated SPR, the second cluster (SPR2) is the most prevalent covering 22% of the study area. On average, landscapes in SPR2 are comprised of 55.5% forest cover, and contain the highest number of patches, and forest/non-forest joins, indicating highly fragmented landscapes. Regionalization of landscape pattern metrics provides a useful approach for examining the spatial distribution of forest pattern. Where forest patterns are associated with positive or negative environmental conditions, SPR can be used to identify similar regions for conservation or management activities.PostprintPeer reviewe

    Potential contributions of remote sensing to ecosystem service assessments

    Get PDF
    Ecological and conservation research has provided a strong scientific underpinning to the modeling of ecosystem services (ESs) over space and time, by identifying the ecological processes and components of biodiversity (ecosystem service providers, functional traits) that drive ES supply. Despite this knowledge, efforts to map the distribution of ESs often rely on simple spatial surrogates that provide incomplete and non-mechanistic representations of the biophysical variables they are intended to proxy. However, alternative data sets are available that allow for more direct, spatially nuanced inputs to ES mapping efforts. Many spatially explicit, quantitative estimates of biophysical parameters are currently supported by remote sensing, with great relevance to ES mapping. Additional parameters that are not amenable to direct detection by remote sensing may be indirectly modeled with spatial environmental data layers. We review the capabilities of modern remote sensing for describing biodiversity, plant traits, vegetation condition, ecological processes, soil properties, and hydrological variables and highlight how these products may contribute to ES assessments. Because these products often provide more direct estimates of the ecological properties controlling ESs than the spatial proxies currently in use, they can support greater mechanistic realism in models of ESs. By drawing on the increasing range of remote sensing instruments and measurements, data sets appropriate to the estimation of a given ES can be selected or developed. In so doing, we anticipate rapid progress to the spatial characterization of ecosystem services, in turn supporting ecological conservation, management, and integrated land use planning

    Remote sensing technologies for enhancing forest inventories: a review

    No full text
    Forest inventory and management requirements are changing rapidly in the context of an increasingly complex set of economic, environmental, and social policy objectives. Advanced remote sensing technologies provide data to assist in addressing these escalating information needs and to support the subsequent development and parameterization of models for an even broader range of information needs. This special issue contains papers that use a variety of remote sensing technologies to derive forest inventory or inventory-related information. Herein, we review the potential of 4 advanced remote sensing technologies, which we posit as having the greatest potential to influence forest inventories designed to characterize forest resource information for strategic, tactical, and operational planning: airborne laser scanning (ALS), terrestrial laser scanning (TLS), digital aerial photogrammetry (DAP), and high spatial resolution (HSR)/very high spatial resolution (VHSR) satellite optical imagery. ALS, in particular, has proven to be a transformative technology, offering forest inventories the required spatial detail and accuracy across large areas and a diverse range of forest types. The coupling of DAP with ALS technologies will likely have the greatest impact on forest inventory practices in the next decade, providing capacity for a broader suite of attributes, as well as for monitoring growth over time

    Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada

    Get PDF
    Forest inventory and monitoring programs are needed to provide timely, spatially complete (i.e. mapped), and verifiable information to support forest management, policy formulation, and reporting obligations. Satellite images, in particular data from the Landsat Thematic Mapper and Enhanced Thematic Mapper (TM/ETM +) sensors, are often integrated with field plots from forest inventory programs, leveraging the complete spatial coverage of imagery with detailed ecological information from a sample of plots to spatially model forest conditions and resources. However, in remote and unmanaged areas such as Canada's northern forests, financial and logistic constraints can severely limit the availability of inventory plot data. Additionally, Landsat spectral information has known limitations for characterizing vertical vegetation structure and biomass; while clouds, snow, and short growing seasons can limit development of large area image mosaics that are spectrally and phenologically consistent across space and time. In this study we predict and map forest structure and aboveground biomass over 37 million ha of forestland in Saskatchewan, Canada. We utilize lidar plots—observations of forest structure collected from airborne discrete-return lidar transects acquired in 2010—as a surrogate for traditional field and photo plots. Mapped explanatory data included Tasseled Cap indices and multi-temporal change metrics derived from Landsat TM/ETM + pixel-based image composites. Maps of forest structure and total aboveground biomass were created using a Random Forest (RF) implementation of Nearest Neighbor (NN) imputation. The imputation model had moderate to high plot-level accuracy across all forest attributes (R2 values of 0.42–0.69), as well as reasonable attribute predictions and error estimates (for example, canopy cover above 2 m on validation plots averaged 35.77%, with an RMSE of 13.45%, while unsystematic and systematic agreement coefficients (ACuns and ACsys) had values of 0.63 and 0.97 respectively). Additionally, forest attributes displayed consistent trends in relation to the time since and magnitude of wildfires, indicating model predictions captured the dominant ecological patterns and processes in these forests. Acknowledging methodological and conceptual challenges based upon the use of lidar plots from transects, this study demonstrates that using lidar plots and pixel compositing in imputation mapping can provide forest inventory and monitoring information for regions lacking ongoing or up-to-date field data collection programs

    Mapping the risk of forest wind damage using airborne scanning LiDAR

    Get PDF
    Wind damage is known for causing threats to sustainable forest management and yield value in boreal forests. Information about wind damage risk can aid forest managers in understanding and possibly mitigating damage impacts. The objective of this research was to better understand and quantify drivers of wind damage, and to map the probability of wind damage. To accomplish this, we used open-access airborne scanning light detection and ranging (LiDAR) data. The probability of wind-induced forest damage (PDAM) in southern Finland (61°N, 23°E) was modelled for a 173 km2 study area of mainly managed boreal forests (dominated by Norway spruce and Scots pine) and agricultural fields. Wind damage occurred in the study area in December 2011. LiDAR data were acquired prior to the damage in 2008. High spatial resolution aerial imagery, acquired after the damage event (January, 2012) provided a source of model calibration via expert interpretation. A systematic grid (16 m x 16 m) was established and 430 sample grid cells were identified systematically and classified as damaged or undamaged based on visual interpretation using the aerial images. Potential drivers associated with PDAM were examined using a multivariate logistic regression model. Risk model predictors were extracted from the LiDAR-derived surface models. Geographic information systems (GIS) supported spatial mapping and identification of areas of high PDAM across the study area. The risk model based on LiDAR data provided good agreement with detected risk areas (73 % with kappa-value 0,47). The strongest predictors in the risk model were mean canopy height and mean elevation. Our results indicate that open-access LiDAR data sets can be used to map the probability of wind damage risk without field data, providing valuable information for forest management planning

    Idiosyncratic responses of Pacific salmon species to land cover, fragmentation, and scale

    Get PDF
    Salmon are critical to the ecology and livelihood of the Pacific Northwest, and are declining throughout much of their range. While much of their life cycle occurs in open ocean, freshwater conditions also contribute to population trends. Because stream habitats are connected to uplands by water flow, salmon can be influenced by the characteristics of terrestrial systems. We analyzed the relationships between the population trends of Pacific salmon (1953-2006) and land cover, fragmentation, and forest age derived from remotely-sensed, landscape level datasets. Analyses included 425 populations of all native salmon species in 156 watersheds on Vancouver Island, British Columbia, Canada. Vancouver Island salmon escapements exhibited general patterns of decline, which may be largely controlled by broad-scale marine conditions. The spatial variation in these population trends was related to landscape variables at watershed and riparian scales with regression trees. Results were found to be species specific, but characteristics indicating a legacy of historic and current forest management (such as fragmented forests and non-forested or early-successional forest cover) generally had negative effects, driven by a small subset of highly fragmented watersheds. Chum and coho had strong negative relationships with fragmentation, pink had a strong positive relationship with wetland abundance, and Chinook and sockeye were most closely related to geomorphology. There was no 'single best' scale of analysis. Salmon trends were generally more closely related to variables estimated over the entire watershed, however, the relative importances of watershed and riparian level predictors varied by both variable and species. Efforts to restore salmon habitat will be complicated by marine and freshwater processes, terrestrial conditions throughout watersheds, and the idiosyncratic requirements of each species
    • …
    corecore